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Introduction
The geometric median is a classic robust estimator of centrality for data in
Euclidean spaces, and it has been generalized in analytical manifold in [1].
Recently, an intrinsic Riemannian framework for Orientation Distribution
Function (ODF) was proposed for the calculation in ODF field [2]. In this work,
we prove the unique existence of the Riemannian median in ODF space. Then
we explore its two potential applications, median filtering and atlas
estimation
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Riemannian framework for ODFs

I. PDF family via orthonormal basis representation [2]

Median Smoothing
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II. The intrinsic Riemannian framework for ODF computing [2]

 Fisher metric [6]:

 Geodesic:

 Exponential map: , where

 Logarithmic map: , where
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 PS is a closed convex

 PS is contained in a convex cone with 900

 The projection of any on the uniform ODF is more than

 Weighted Riemannian mean uniquely exists
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 Edge-preserving smoothing

 Experiment on synthetic data (Gaussian noise on tangent space)

Weighted Riemannian Median

 Definition:

 Uniquely exists if one of the two conditions is satisfied [1]

a) the sectional curvatures of M are non-positive

b) the sectional curvatures of M are bounded by and ,

where is the convex set which contains and is the diameter of

 A Weighted Riemannian median uniquely exists in PS because of condition (b)

 No close form. Numerical algorithm [1]:
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Atlas Estimation

III. Properties of parameter space (PS) [2]
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Fig. 1. Median filtering in synthetic data. From left to right: original data, noise data, filtered data.

 Robust Statistics, breakdown point

 Experiment on outlier effect

Left: regular ODFs, outliers; Right: Euclidean mean, Riemannian mean, Riemannian median

 Atlas Estimation on five subjects

 Affine registration on all DWIs

 Affine matrix from the registration on the image without diffusion via FSL

 re-orientate the gradient directions via the finite strain (FS) [4]

From left to right, first row: a slice of estimated atlas; ODF field in ROI for one subject; ODF
field of the estimated atlas, second row: ODF field in ROI with Gaussian noise in Riemannian
space (std=0.1) for one subject; ODF field of estimated atlas from the data with noise.
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