Riemannian Median and Its Applications for Orientation Distribution Function Computing

Jian Cheng¹², Aurobrata Ghosh¹, Tianzi Jiang², Rachid Deriche¹

¹Athena, INRIA Sophia Antipolis, France ²LIAMA, NLPR, Institute of Automation, Chinese Academy of Sciences, China

Introduction

The geometric median is a classic robust estimator of centrality for data in Euclidean spaces, and it has been generalized in analytical manifold in [1]. Recently, an intrinsic Riemannian framework for Orientation Distribution Function (ODF) was proposed for the calculation in ODF field [2]. In this work, we prove the unique existence of the Riemannian median in ODF space. Then we explore its two potential applications, median filtering and atlas estimation

Riemannian framework for ODFs

I. PDF family via orthonormal basis representation [2]

$$p(\mathbf{x} \mid \mathbf{c}) = \left(\sum_{i=1}^{K} c_i B_i(\mathbf{x})\right)^2 \qquad \sum_{i=1}^{K} c_i^2 = 1 \qquad \sum_{i=1}^{K} c_i B_i(\mathbf{x}) \ge 0$$

- II. The intrinsic Riemannian framework for ODF computing [2]
- Fisher metric [6]: $g_{ij} = 4 \int_{S^{K-1}} \partial_i \sqrt{p(\boldsymbol{x} \mid \boldsymbol{c})} \partial_j \sqrt{p(\boldsymbol{x} \mid \boldsymbol{c})} d\boldsymbol{x} = 4 \delta_{ij}$
- $d_{g_{ii}}(p(\cdot|\boldsymbol{c}), p(\cdot|\boldsymbol{c}')) = d_{\delta_{ii}}(\boldsymbol{c}, \boldsymbol{c}') = \arccos(\boldsymbol{c}^T \boldsymbol{c}')$ Geodesic:
- Exponential map: $Exp_c(v_c) = c' = c\cos\varphi + \frac{v_c}{\|v_c\|}\sin\varphi$ Logarithmic map: $Log_c(c') = v_c = \frac{c' c\cos\varphi}{\|c' c\cos\varphi\|}\varphi$

where $\varphi = ||v_c||$

III. Properties of parameter space (PS) [2]

- PS is a closed convex
- PS is contained in a convex cone with 90°
- The projection of any u on the uniform ODF c is more than $\frac{1}{\sqrt{4\pi}}$
- Weighted Riemannian mean uniquely exists $m_w = \arg\min\sum w_i d(f, f_i)^2$

Weighted Riemannian Median

- Definition: $\mu_w = \arg\min_{i=1}^{\infty} w_i d(f, f_i)$
- Uniquely exists if one of the two conditions is satisfied [1]
 - a) the sectional curvatures of M are non-positive
 - b) the sectional curvatures of M are bounded by $\Delta > 0$ and $diam(U) < \pi/(2\sqrt{\Delta})$,

where U is the convex set which contains $\{x_i\}$ and diam(U) is the diameter of U

- A Weighted Riemannian median uniquely exists in PS because of condition (b)
- No close form. Numerical algorithm [1]:

Algorithm 1: Weighted Riemannian Median

Input: $f_1, ..., f_N \in PS^K$, $\mathbf{w} = (w_1, ..., w_N)'$, $w_i \ge 0, i = 1, 2, ..., N$, $\sum_{i=1}^N w_i = 1$. **Output**: $\mu_{\mathbf{w}}$, the Weighted Frechet Mean.

Initialization: $\mu_{\mathbf{w}}^{(0)} = \frac{\sum_{i=1}^{N} w_i f_i}{\|\sum_{i=1}^{N} w_i f_i\|}, k = 0$

 $q_i = w_i d(\mu_{\boldsymbol{w}}^{(k)}, x_i) / \sum_{i=1}^n w_i d(\mu_{\boldsymbol{w}}^{(k)}, x_i), \quad v_{\mu_{\boldsymbol{w}}^{(k)}} = \sum_{i=1}^N q_i Log_{\mu_{\boldsymbol{w}}^{(k)}}(f_i)$

 $\mu_{\mathbf{w}}^{(k+1)} = Ex p_{\mu_{\mathbf{w}}^{(k)}}(v_{\mu_{\mathbf{w}}^{(k)}})$

k = k + 1

while $||v_{\mu_w^{(k)}}|| > \varepsilon$

Median Smoothing

- Edge-preserving smoothing
- Experiment on synthetic data (Gaussian noise on tangent space)

Atlas Estimation

- Robust Statistics, breakdown point
- Experiment on outlier effect

Left: regular ODFs, outliers;

Right: Euclidean mean, Riemannian mean, Riemannian median

- Atlas Estimation on five subjects
 - Affine registration on all DWIs
 - Affine matrix from the registration on the image without diffusion via FSL
 - re-orientate the gradient directions via the finite strain (FS) [4]

From left to right, first row: a slice of estimated atlas; ODF field in ROI for one subject; ODF field of the estimated atlas, second row: ODF field in ROI with Gaussian noise in Riemannian space (std=0.1) for one subject; ODF field of estimated atlas from the data with noise.

References

- 1. P. T. Fletcherr, Suresh Venkatasubramanian, Sarang Joshi: The geometric median on Riemannian manifolds with application to robust atlas estimation NeuroImage 2009(45) S143-S152
- Jian Cheng, Aurobrata Ghosh, Tianzi Jiang, Rachid Deriche: A Riemannian Framework for Orientation Distribution Function Computing. MICCAI 2009
- Iman Aganj, Christophe Lenglet, Guillermo Sapiro: ODF reconstruction in q-ball imaging with solid angle consideration. ISBI 2009
- David S. Tuch: *Q-ball imaging*. Magnetic Resonance in Medicine 2004(52) 1358-1372
- 5. D. C. Alexander, C. Pierpaoli, P. J. Basser, J. C. Gee: Spatial Transformations of Diffusion Tensor Magnetic Resonance Images. IEEE Transactions On Medical Imaging 2001(20)
- 6. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. International Journal of Computer Vision 2006(66) 41–66